CAMARAS DE ENSAYOS - CCI CONTROL DE CALIDAD

ARTICULOS

InicioEmpresaProductosNovedadesServiciosCalidadReferenciasNoticiasArtículosContactar

 

NASA. SMAP. HIDRUS. Humedad ambiental de la TIERRA

 

Imagen. SMAP. NASA

Con su lanzamiento programado para el 29 de enero de 2015, el instrumento Activo-Pasivo para la Detección de la Humedad del Suelo (SMAP), de la NASA, medirá la humedad alojada en los suelos de la Tierra con exactitud y resolución sin precedentes. Las tres partes principales del instrumento son: un radar, un radiómetro y la antena de malla giratoria más grande jamás desplegada en el espacio.

 

Los datos reunidos ayudarán a predecir las condiciones del tiempo, las inundaciones, las sequías, el rendimiento de las cosechas y los deslizamientos de tierra; todo desde el espacio exterior. 


A los instrumentos de detección remota se los llama “activos” cuando emiten sus propias señales y “pasivos” cuando registran señales que ya existen. El instrumento científico de la misión posee un sensor de cada tipo para reunir las mediciones más exactas y de mayor resolución que jamás se han tomado de la humedad del suelo; una pequeña fracción del agua de la Tierra que tiene un efecto desproporcionadamente grande sobre las condiciones meteorológicas y también sobre la agricultura.

 

Para permitir que la misión alcance el nivel de exactitud necesario mientras que cubre el globo cada tres días, más o menos, los ingenieros del SMAP en el Laboratorio de Propulsión a Chorro, de la NASA, ubicado en Pasadena, California, diseñaron y construyeron la antena giratoria más grande que podría guardarse en un espacio de solo 30 por 120 centímetros para el lanzamiento. El disco mide 6 metros de diámetro. 

 

“Lo llamamos el lazo giratorio”, dijo Wendy Edelstein, del Laboratorio de Propulsión a Chorro de la NASA, en Pasadena, California, quien está a cargo del instrumento SMAP. Como el lazo de un vaquero, la antena se une en un costado a un brazo con un gancho en el codo.

 

Gira alrededor del brazo a unas 14 revoluciones por minuto. El disco de la antena fue aportado por Northrop Grumman Astro Aerospace, en Carpinteria, California. Y el motor que hace girar la antena fue proporcionado por la compañía Boeing, en El Segundo, California. 


“La antena nos causó mucha angustia, sin duda”, señaló Edelstein. Aunque la antena debe caber durante el lanzamiento en un espacio no mayor al de un cesto de basura alto, tiene que desplegarse de manera muy precisa, de modo que la forma superficial de la malla sea exacta dentro de aproximadamente unos pocos milímetros. 

 

El disco de malla está bordeado por un anillo de soportes de grafito liviano que se estiran y se abren como una puerta para bebés cuando se tira de un solo cable, desplegando así la malla. “Asegurarnos de que no se trabe, que la malla no se enganche en los soportes y se rompa al desplegarse… todo eso requiere una ingeniería muy cuidadosa”, dijo Edelstein.

 

El radar del SMAP, desarrollado y construido en el JPL, utiliza la antena para transmitir las microondas hacia la Tierra y recibir las señales que regresan, lo cual se llama retrodifusión. 


Las microondas penetran unas pocas pulgadas o más en el suelo antes de rebotar. Los cambios en las propiedades eléctricas de las microondas que regresan señalan cambios en la humedad del suelo y también dicen si el suelo está congelado o no. Mediante el uso de una técnica compleja, llamada procesamiento de radar de apertura sintética, el radar puede producir imágenes muy nítidas con una resolución de uno a tres kilómetros. 

 

El radiómetro del SMAP detecta diferencias en las emisiones naturales de microondas de la Tierra que son causadas por el agua en el suelo. Con el fin de abordar un problema que ha obstaculizado seriamente las misiones anteriores que utilizaron este tipo de instrumento para el estudio de la humedad del suelo, los diseñadores del radiómetro del Centro Goddard para Vuelos Espaciales, de la NASA, en Greenbelt, Maryland, desarrollaron y construyeron uno de los más sofisticados sistemas de procesamiento de señales jamás creado para un instrumento científico. 

 

El problema es la interferencia de radiofrecuencia. Las longitudes de onda de las microondas que SMAP utiliza están oficialmente reservadas para uso científico, pero las señales en longitudes de onda cercanas que se utilizan para el control del tráfico aéreo, los teléfonos celulares y otros propósitos, se propagan a las longitudes de onda del SMAP de forma imprevisible. El procesamiento convencional de señales promedia los datos durante un período prolongado, lo cual significa que incluso una breve ráfaga de interferencia sesga el registro para ese período. Los ingenieros del centro Goddard idearon una nueva forma de eliminar sólo los segmentos pequeños de interferencia real, dejando mucho más de las observaciones intactas. 

 

La combinación de las señales de radar y del radiómetro permite a los científicos sacar ventaja de las fortalezas de ambas tecnologías y evitar sus debilidades. “El radiómetro proporciona datos más precisos sobre la humedad del suelo pero brinda una resolución tosca, de aproximadamente 40 kilómetros”, expresó Eni Njoku, del JPL, un científico de investigación que trabaja con el instrumento SMAP. “Con el radar, se puede crear una resolución muy alta, pero es menos exacta. Para obtener una medición exacta y de alta resolución, procesamos las dos señales juntas”. 

 

Científicos de la Universidad de Salamanca, a través de su Grupo de Investigación en Recursos Hídricos (HIDRUS), colabora con la NASA en este proyecto.

 

www.cci-calidad.com

Inicio  Volver

 Petición oferta          Petición información          Consulta